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Systems 

We give a complete description of the set of periodic Gibbs states at low 
temperatures for classical spin systems with arbitrary ferromagnetic, finite-range, 
interactions and fairly general even single-spin distribution of compact support 
on R. This extends results of Holsztynski and Slawny for the spin-l /2  case. The 
extension is based on recent ferromagnetic inequalities and low-temperature 
expansions. 

KEY WORDS: Low-temperature phases; periodic Gibbs states; ferromag- 
netic spins. 

1. INTRODUCTION 

In a recent paper Holsztynski and Slawny ~ have given a complete 
description of all low-temperatures periodic Gibbs states for Ising spin-1/2 
systems with ferromagnetic finite-range interactions on a lattice Z d. Their 
results can be summarized as follows: for spin-1/2 Ising ferromagnets, the 
set ~ +  = (A c Z  d, A finite]p+(SA)v~O}, where S A = I-[iEASi and O + is 
the infinite-volume Gibbs state obtained with + boundary conditions, 
deterrfiines the set Ap of all periodic (and quasiperiodic) Gibbs states at 
sufficiently low temperatures. Using correlation inequalities, this is actually 
true whenever the pressure (or free energy) is differentiable with respect to 
the temperature, i.e., except possibly on a countable set of values of T. ~2'3) 

This work was supported in part by NSF Grant PHY78-15920 and (through author CEP) 
the Swiss National Foundation for Scientific Research. 

1 Department of Mathematics, Princeton University, Princeton, New Jersey. 
2 On leave from Institut de Physique Th~orique, Universit~ de Louvain, Belgium. 
3 Department of Mathematics and Physics, Rutgers University, New Brunswick, New Jersey. 
4 Departement de Mathematiques, Ecole Polytechnique F~d~rale de Lausanne, Lausanne, 

Switzerland. 
269 

0022-4715/81/0100-0269503.00/0 �9 1981 Plenum Publishing Corporation 



270 Bricmont, Lebowitz, and Pfister 

The set ~ + was then shown to be determinable by algebraic means, 
leading, for finite-range interactions, to a complete description of 5p. 

It  is the purpose of this note to show that this result can be extended to 
general continuous or discrete Ising spins with even single-spin measure of 
compact  support. Our analysis is based on (a) showing that here, too, ~ § 
determines the set A e for almost all temperatures and (b) reducing the 
determination of 6s + to that of an equivalent spin-1/2 system. 

Both parts involve the use of ferromagnetic inequalities. In the Appen- 
dix we reproduce the proof of one of them, namely Wells' inequality. (4) 

Part (a) can be strengthened for a large class of a priori measures to all 
sufficiently low temperatures by the use of low-temperature expansions for 
the free energy, as in the case of sp in - l /2  systems. 

Some of the ideas used in this note were already noted by Slawny in 
Ref. 5, Remark 6-1, but the inequalities used here were not available then. 

2. THE MAIN RESULTS 

2.1. Gibbs  S ta tes  (6'7) 

Let l be a discrete Zd-invariant subset of R d. For each i ~ L, we have a 
copy (K,., vi) of the interval [ - 1, + 1] and of a Borel probability measure v 
on [ -  1, + 1]. For A C_/, we let K a = Hi~AKi, vA = I-Ii~Avi. 

The set of multiplicity functions (m.f.) M is the set of all maps from / 
into N equal to zero except on a finite set. For A ~ M, and A c I_, A C A 
means A (i) = 0 for i ~ A, while A (3 A :/: 0 means A (i) 4 :0  for some i E A, 

IAI = ~,,A(i),  A =  { i E L l A ( i )  isodd } 
i 

Given A E M and a family (f)i~L of functions from K~ into R, we let 
f .  = H~A(i) 

An interaction J is a map from M into R, s u p p J  = (A ~ M[J(A) 
-~ 0). A fundamental family for J is a set @0 c M such that any A ~ s u p p J  
is the translate of exactly one A in q5 o (with the natural action of Z d on 
M,A --)A + i). We only consider interactions having a finite fundamental  
family and which are translation invariant: J(A) = J(A + i). 

Given any finite A c L and any configuration SAc = (Si)~hC, called a 
boundary condition (b.c.), one defines the Hamiltonian HA,Si as a function 
on KA: 

HA,s i=--  ~ J (A)S  A ( I )  
A V ~ A ~ O  
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The Gibbs measure under  the boundary  condit ion SAO is 

d/~A,SA c = ZA, IA c exp( - flHA,sA c ) dp A (2) 

= fK exp - (3) zA"Ac A ( fiHA,sAc )d A 

and /3  = 1 / k T ,  where T is the temperature.  We let ( �9 �9 �9 )A,s^~ denote  the 
expectat ion value with respect to/ZA,s~ ~. 

Given an inverse temperature  fl and an interaction J,  a state 0 on K k is 
a Gibbs state for (fl ,  J )  if VA c L, A finite, 

PA(f)  = fKAc(f)A,SAc dOA~ (4) 

where PA = restriction of O to K a. We have A(/3,J)  as the set of Gibbs 
states for ( /3 ,J) ,  and Ai(f l ,  J ) [resp. @(f l ,  J ) ]  as the set of Gibbs states 
which are invariant  under  the natural  action of Z d (resp. periodic, i.e., 
invariant under  a subgrou p of finite index of Zd). 

The pressure is defined as 6(/3, J )  = l imA-~(1/ [AI)  log ZA,S~ ~, which 
exists, is independent  of the b.c., and is convex in/3.  The values o f /9  for 
which d 6 / d B  exists are called regular. Since 6 ( / ? )  is convex, the set of 
irregular points is at most  countable.  I f /3  o is regular, 

for all p ~ A~(flo,J ) where ~0 is a fundamental  family for J .  

2.2. The  State p + 

From now on we shall restrict ourselves to ferromagnetic interactions: 
J ( A )  >> O, VA @ M, and even measures v on [ -  1, + 1], with v not  concen- 
trated at 0. 

Under  these conditions, it is well known (see, e.g., Ref. 8) that the 
" + b . c . "  S, = + 1, Vi ~ A, have the following property:  IimA__,L/~A. + = 0 + 
exists, 0 + E dXl(fl, J ) is extremal in 2x(fl,J), and, moreover,  

V A @ M ,  V p ~ A ( f l ,  J ) ,  p+(SA)>~p(SA)  (6) 

The group G = ( - 1, + 1 )L acts by pointwise multiplication on K L. 
The symmetry  group of J is S = ( g E G [84 o g = S4VA ~ suppJ} .  
The isotropy subgroup of p + is $ + = ( g ~ $ [ p  + (S  A o g) = p + (SA), 

VA E M } .  
We also consider the group ~ (L) of the finite subsets of L, equipped 

with the symmetric difference, denoted • .The  subgroup 6~ is the subgroup 
of s2f (L) generated by  { A[A ~ supp J ), and ~ + is the subgroup of ~ (L) 
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given by the set of A for A such that p+ (SA)@ 0. This is a subgroup, 
because, by Griffiths' inequalities, (s) p+ (SA+B)>1 p+ (SA)P + (So) , where 
A + B is defined pointwise and A + B -- AAB.  Moreover, 63 c 63+ be- 
cause, also by Griffiths' inequalities, (s) p + (SA) v a 0 if J(A) 4= O. 

If we identify s2r(L ) as the dual, in the sense of compact Abelian 
groups, of { - 1, + 1)L, we have the following result: 

Lemma 1.(5) g / $  + can be identified with the dual of (~ + / ~ ) .  

We introduce the set of Gibbs states: A+ ( f l , J ) =  {0 ~ A(fl, J)Ip(SA) 
= p+ (S,4) for all A such that A E 63}. The elements of G act on states by 
transposition. If g E g, 0g + ~ A+ (fl, J ) ;  in the converse direction, one has 
the following: 

Proposition, A+(/~,J)  is a closed, convex subset of A(fl, J )  in the 
weak* sense. All extremal states of A+(fl,  J )  are of the form Og + for 
g ~ g / $  +; therefore all states of A + (fi, J )  are of the form 

p = i /s+Og + d)t(g) (7) 

for some probability measure X on $ / $  +. We have that p is invariant (or 
periodic, or ergodic) iff )t is. 

For a proof, see, e.g., Ref. 9. 
We may now state the main results (Theorem and Corollary below). 

For a ~ [0, 1] we let 8~ be the probability measure concentrated with equal 
weight on _+ a. 

Theorem. For any translation-invariant ferromagnetic interaction J 
and any even measure u on [ -  1, + 1] not concentrated at zero, we have 
that (a) if fi0 is regular, Ap(fl0,J ) c_ A + (flo,J), i.e., any O ~ Ae(fl0,J) is of 
the form (7) with h periodic; (b) if L = Z a, 3fl  such that for all fl '  t> fl, the 
group Y3 + for fl', J, and v coincides with the one of fl', J,  and 8 I. 

Remark. The Theorem holds for any p even and of compact support, 
because the restriction to [ -  1, + 1] is only a change of scale which does not 
affect the results, as can be seen from the proof. 

Using the low-temperature expansions of Ref. 10, Theorem 2, one 
shows that, for suitable ~, qJ(fl) is analytic in fi for fi large enough. In 
particular, ~ ( f l )  is different~llble, i.e., all values of fl are regular for fl large; 
combining this, the Theorem, and Lemma 1 together with the main 
Theorem of Ref. 1 gives the following: 

Corollary. Let L = Z d. For J and p as in the Theorem with the 
additional assumption that either v({1})@0, or that 3~ > 0 ,  and a,b,n 
< oe, such that on [ 1 - ~, 1], v is absolutely continuous with respect to the 
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Lebesque measure and dv(s) /ds  = f(s)  satisfies 

b < f ( s ) / ( 1 - s ) " < a ,  S O [ 1 -  ~/, 1] 

then there exists a fl such that for all fl '  > fl all periodic Gibbs states are of 
the form (7) with 2~ periodic and $ / $  + given by Lemma 1 and ~ + = the 
subgroup of @/(zd)_generated by the translates of D, D being the greatest 
common divisor of ~,  in the sense of Ref. 1. 

Remark.  With the results of Ref. 11 one may extend these results to 
arbitrary k. The only result which is needed is that, for v = 6 l, ~ + be 
independent of the relative values of the J(A)'s for/3 large. 

3. PROOF OF THE THEOREM 

We start with the following Lemma, whose proof is in Ref. 1, Appen- 
dix B: 

l e m m a  2. Under the hypotheses of the Theorem, if AI(/3,J ) 
C_ A+ ( fi, J), then Ae( fl, J ) C_ A+ ( /3,J). 

The proof of (a) follows closely the proof of Theorem 7 in Ref. 3, using 
the inequality (2.5) and the proof of Corollary 5' in Ref. 12, which extends 
the results of Ref. 2 to continous spins. 

Since (d~/dfi)lB=~o exists we have, using (5), (6), and the positivity of 
J(A),  

o+(SA)=p(SA) O vA v0  i(/30,J) (8) 
The "fact that p+(SA)=/=O follows from Griffiths' inequalities (8) and (8) 
extends to all A ~ suppJ  by translation invariance. 

We want to show (8) for all A such that A ~ o~ and all p E Az(flo,J ). 
Then the conclusion will follow from the definition of A +(/30, J )  and from 
Lemma 2. To this end, we use inequality (2.5) of Ref. 12, which implies: for 
any A, B e M, and p ~ A(/3,J) and any two families (f) ,  (gi) of functions 
from [ -  1, + 1] into R, where each f. is odd and monotone increasing and 
each gi is odd or even with I gi(Si)[ < 1, we have 

o + ( f A ) - - o ( f A )  > Io+(fAg, )o(gB)--P+(gs)P( fAgs) l  (9) 

We introduce the functions: 

S, if ISil<<.~i 
ai(Si '~i)= XisgnS / if Iai[>Xi 

Notice that oi(Si,L) = S i if h i = 1 (since Ia, l < 1) and [oi(Si,~ki)]2-/~i con- 
verges to 1 as L--~0 except for S i = 0. Moreover, S i - oi(si,~i),oi(S.hi) are 
odd monotone increasing functions of Si. From inequality (9) it follows that 
P+ (fA) /> P(fA) for any o E  A(fio,J ), where f = S i - ai(Si,~i) or ai(Si,~i). 
Therefore, expanding S A =I] i .  ( S i - a i +  ai) A~i), we get that p+(SA) 



274 Bricmont, Lebowitz, and Pfister 

= P(SA) implies 

0 + (oA) = 0(oA)  (10)  

Also, by (9) we have that p+(oA)= p(OA) and p + ( % ) =  0 ( % ) : # 0  
imply 

O + (o~ o , )  = O(o~ oB) (11) 

Using (8) and (10), we have that p + (oA) = p(oA) VA ~ suppJ,  Vp ~ Ai(/30, 
J) ,  and by choosing suitable h i, dividing by ;k/, and letting some h/-- 1 and 
others tend to zero, we have 

p+(S~) = p ( S x ) ,  where S~ = I-I s, (12) 
i E 7  

But by (11), 0+(OA 2) = O(o]), and using suitable hi, we deduce p+(Si 2) 
= p(Si 2) Vi such that A ( i ) ~  0. For any i ~ L, either A (i)v ~ 0 for some 
A ~ suppJ  or p + (S/z) = o(S/~) holds trivially. Combining this with (12) and 
(11), we have 

where the n i are positive integers. Equation (13) shows that 0 + and p 
coincide on all B E M such that B = A. 

Given (13), we finish the proof by induction: (8) and (11) with all 
X~-- 1 generate the coincidence of O and 0 + on all functions SA+ B, with 
p+(SA) = P(SA) , B E suppJ,  and we use A + B = A A B .  

The proof of (b) follows from the following two inequalities: For any v 
even 4 = 6 o and with supp v c [ -  1, + 1], Ba > 0 such that VA E M, 

(SA>&+ < (SA),, + < (SA>I, + (14) 

where on the lhs and the rhs we have replaced the measure vi(S/) at each 
site by 6a2(S/) or 61(S/). All expectation values are taken with +b.c.  and in 
any A c_ k. The first inequality is due to Wells (4) and its proof is in the 
Appendix. The second one follows from Griffiths' inequalities: (7) we write 
S /=  o/r;, where o i = _+ 1 and r /E  [0, 1]. By conditioning on the values of r/, 
l E A ,  

( S A).,+ = folrA(oA> + (Jr) d~(r) 

where q0 is a probability measure on [0, 1] IAI and (Jr)(A) = J(A)r  A. But, by 
Griffiths' inequalities, 

<o~>+ (Jr)  < <o~>+ ( J )  = <oA>I,+ 

because r i < 1. Also, f~rA d~(r) < 1, which shows (14). 
By scaling, (SA>a,+ = al'~l<sA>t,+ with interactions J ' ( A ) =  J(A)a IAI. 

But for/3 large enough (depending on J and a, i.e., on J and v), ~ + is the 
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same for J and for J '  (see Ref. 1). Hence the conclusion of (b) in the 
Theorem follows from (14). 

Remark. 1. If we have "unbounded spins," i.e., the measure v i is not 
of compact support but is suitably decaying at infinity, then the first 
inequality in (14) holds. This gives an easy way to prove the existence of 
phase transitions for such models, as was noted by Wells. (4) Similar 
arguments were given earlier by Nelson (13) and van Beijeren and Sylves- 
ter.(14) 

2. In Ref. 1, Appendix B, Lemma 2 is extended to "quasiperiodic" 
Gibbs states and all our results extend to this class. 

3. There is an interesting example which shows why the restriction to 
ferromagnetic interactions is rather subtle. Let 

H = J  E ( S ~ - S j ) 2 - ~ E S i  2 
(ij.>EA l e A  

where the first sum is over nearest neighbors, and v is concentrated on 
- 1,0, + 1 with equal weights. Then (see Ref. 15 or Ref. 16) one has for 
every/3 large a value of/~ such that there are three extremal translation- 
invariant Gibbs states. If we write (S , . -  Sj) 2= S/2-b Sj 2 -  2SiSj, we see 
that our Hamiltonian is not ferromagnetic, because of the S; 2 term. How- 
ever, we may absorb the terms in Si 2 (and/,Si 2) into the single-spin measure 
and the Hamiltonian would then be ferromagnetic, but the phases (3) do 
not correspond to the sp in- l /2  case. The reason is that we have put 
/3-dependent terms in the single-spin measure and this is different from the 
situation considered in this note. Actually, if we put/z  = / , ( / 3 )  so that we 
have three phases, absorb all the Si 2 terms in the single-spin measure, and 
put a new parameter/3 '  multiplying the term ~<o>SiSj, then d~b/d/3' does 
not exist for the value o f / 3 '  for which there are three phases. Indeed, if 
d~p/d/3' existed, then the proof of part (a) in the Theorem would show that 
all translation-invariant Gibbs states coincide on Si 2, which is known to be 
false in this case. (1536) So, in this way we have constructed an example of a 
ferromagnetic (spin 1) system where some value of the temperature is not 
regular. 

APPENDIX. PROOF OF WELLS' INEQUALITY 

We prove the first inequality in (14), following Ref. 4. Using duplicate 
variables, this amounts to showing that there exists an a > 0 such that 

f (s  A - S~)exp[AcA ~ J(A)(SA + S~)I 

X I71 dpi(Si)6(Si ,2- a2)dS/ > 0 
i ~ A  



276 Bricmont, Lebowitz, and Pfister 

for all A E M and all J ferromagnetic. Expanding in the usual way, it is 
enough to show that for all n, m ~ N, 

f (S  + S ' )m(S  - S ' ) " d ~ ( S ) 8 ( S  '2 - aZ )ds ' >  0 

By symmetry we can assume that m, n are odd and m > n. Then, integrat- 
ing over S '  gives 

f ( S 2 - a 2 l ~ [ ( S - a ) ' ~ - " + ( S + a ) m - " ] d v ( S )  (A1) 

since m - n is even, the term in the brackets is an increasing function of 
Isl. Therefore, it is larger than (2a) m-" if Isl > a and less than (2a) m-n if 
]S I < a. Therefore (A1) is bounded below by 

(2a) -nf (s2- 
If v is not 8 o, there exists a K ~ 0  such that v([K, oe])4=0. Let 

a = K / M  where M is chosen below. We have 

M2 d r ( S )  

K 2 ) "  + K 2 )  n 

[>>-K M2 dr(S) 

> _ (  K 2 " K 
M 2 )  v ( f K , ~  

\ 

t M  2 ] [ M + 2 ( M 2 -  1) v ( [ K ' ~  

It is immediate that this last expression is positive for all n, if we choose M 
large enough. 

Remarks .  It is easy to check that Wells' proof, together with 
Ginibre's proof of his inequalities, (17) yields a similar inequality for rota- 
tors: let K i = N 2 and pi = a rotation-invariant measure on R 2 (suitably 
decaying at infinity). We have 

- H = ~ J ( m , A ) r  A cosmO 
m,. ,4  

where m is a m.f. with values in Z instead of N and mO= ~,rn(i)O i. Assume 
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J ( m , A )  >10. Then there exists a > 0 such that VB, Vn, 

(r  8 cosnO)' ~ (r  B cosnO) 

where in ( - �9 �9 )' we substitute dv'(r,O) = 8(r  - a)drdO for dr. 
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